場合の数 サピックス 自作教材 算数 小4 小5 小6

数字の書かれたカードで整数を作る問題【中学受験算数】

 

【問題】

  1. 0,0,1,2の数字の書かれた4まいのカードのうち3まいを使って3けたの整数をつくります。つくることのできる整数は、全部で こです。(SAPIX43月度入室・組分けテスト2019年)
  2. 1,1,2,3の数字の書かれた4枚のカードで3けたの整数を作るとき、全部で何通りできますか。(城西川越2020年)
  3. 0,1,2,3の数字が1つずつ書かれた4枚のカードがあります。このうち3枚のカードを並べて3けたの数を作ります。3けたの数は何個できますか。(大妻嵐山2020年)
  4. 0,2,3,4,7の数字が1つずつ書かれた5まいのカードのうち、3まいを使って3けたの整数を作るとき、偶数は全部で 通りつくることができます。(SAPIX64月マンスリー2018
  5. 0,1,3,7,8の数字が1つずつ書かれた5まいのカードのうち、3まいを使って3けたの整数を作ります。作った整数のうち、大きい方から17番目の整数は です。(SAPIX43月度入室・組分けテスト2018年)
  6. 0,1,4,5,5の数字の書かれた5枚のカードから3枚をならべて3けたの整数を作ります。このとき奇数は全部で何通りできますか。(SAPIX43月度入室・組分けテスト2021年)
  7. 1,2,3,44枚のカードのうち、2枚を使ってできる2けたの整数は 個あり、そのうち3の倍数は 個あります。(トキワ松2020年)
  8. 0,1,2,4,65枚のカードのうち、3枚を並べて3けたの整数をつくるとき、3の倍数は全部で 通りあります。(SAPIX43月度復習テスト2021年)
  9. 0,1,2,3,4の数字の書かれた5枚のカードがあります。このカードから3枚を選び、3けたの奇数を作ります。このとき、何種類の奇数ができますか。(江戸川女子2020年)
  10. 0,1,2,5,8の数字が書かれたカードが1枚ずつ、全部で5枚のカードがあります。この5枚のうち3枚を並べて3けたの整数を作るとき、4の倍数は 通りできます。(SAPIX56月度マンスリーテスト2019年)
  11. 0,1,4,5,9の数字が書かれたカードが1枚ずつ、全部で5枚のカードがあります。このうち、3枚を並べて3けたの整数を作るとき、3の倍数は何通りできますか。(SAPIX58月度マンスリー確認テスト2013年)
  12. 1,2,3,4,55枚のカードから異なる3枚を選んで並べて、3けたの整数を作るとき、350より大きい整数はいくつありますか。(法政大学第二2020年)
  13. 0,1,3,4,7,8の数字が書かれたカードが1枚ずつ、全部で6枚のカードがあります。これらの中から3枚を並べて3けたの整数を作ります。このとき、作ることのできる整数の中で小さい方から25番目の数は何ですか。(SAPIX64月度マンスリー2021
  14. 1から333までの整数が書かれたカードが1枚ずつあります。この333枚のカードのうち3の倍数が書かれたカードを全て取り除き、残ったカードのうち4の倍数が書かれたカードを全て取り除きました。次の問いに答えなさい。① カードは全部で何枚取り除きましたか。②その後、残ったカードのうち6の倍数より4小さい整数が書かれたカードを全て取り除きました。(ア) 6の倍数より4小さい整数が書かれたカードは何枚取り除きましたか。(イ) 6の倍数より4小さい整数が書かれたカードを取り除いた後に残ったカードには、5の倍数より2小さい整数が書かれたカードは何枚ありますか。(SAPIX63月度復習テスト2019
  15. 0,1,2,6の数字4文字と、S,D,Mのアルファベット3文字を組み合わせて7けたの暗証番号を作ります。このとき、① 数字とアルファベットが交互に並ぶような暗証番号は、全部で何通りできますか。また、②0S12DM6』や『S012D6M』のように、数字だけ見ると0,1,2,6の順に並び、アルファベットだけを見るとS,D,Mの順に並ぶような暗証番号は全部で何通りできますか。(専修大松戸2020年)
  16. 1,3,4,5,7の数字の書かれた5枚のカードから2枚を選んで2けたの数を作る時、素数は何通りできますか。ただし、2枚とも同じカードを選ぶことはできません。(筑波大附属2020年)
  17. 1,2,3,7,8,9の6枚のカードがあります。このカードの中から4枚を取り出して、4けたの整数を作ります。① できる数のうち3の倍数で、2番目に大きい数はなんですか。② できる数のうち4の倍数で、もっとも小さい数ともっとも大きい数の和はなんですか。(実践女子2020)
  18. 1から6までの数字が書かれた6枚のカードがあります。この中から3枚を取り出して並べ、3けたの数を作ります。次の問いに答えなさい。① 3けたの数は、全部で何個作れますか。② 作ることができる3桁の数で50番目に大きい数を答えなさい。③ 3の倍数である3桁の数は、全部で何個作れますか。(海城2020年)

PDFで問題を閲覧・印刷する場合はこちら。

 

【解答】

  1. 6
  2. 12
  3. 18
  4. 30
  5. 731
  6. 14
  7. 12、4
  8. 20
  9. 18
  10. 15
  11. 20
  12. 27
  13. 310
  14. 167、28、27
  15. 144、35
  16. 10
  17. 9837,11200
  18. 120,435,48

 

【解説】

(1)

樹形図じゅけいずに書き上げるのが、場合の数の基本です。その時、同じけたをタテにそろえて書くようにしましょう。デコボコした樹形図は、数え間違いのもとです。

見てすぐに分かる通り、答えは6通りです。0は百の位にすることができません。1と2はこの問題では同じ扱いの数字なので、1から始めて3通りだったので、2から始める図は書かなくても3通りと分かります。

答えは樹形図から6通りです。

 

(2)

これも樹形図じゅけいずを書いて解くと良いでしょう。樹形図を書くときは、『かぞえもれ』と『かぞ間違まちがい』がないように、ていねいに書くことが大切です。『タテのラインをそろえること』や『それぞれの図が何通りになるか分かりやすく書いておく』のがコツです。

この問題では2で始めた場合と、3で始めた場合が同じになることが分かっているので、3で始めた図は書かなくてもよいです。もちろん自信がなければ書いてもかまいません。

答えは6+3+3=12通りです。

 

(3)

樹形図じゅけいずで書いてもいいし、計算でいてもいいですね。

樹形図で書くなら図をきれいに書くこと。

計算で解くなら、百のくらい・十の位・一の位に入る数字のパターンをかければよいですね。

答えは3×3×2=18通りです。

 

(4)

偶数ぐうすうになるものを考えるので、一の位が偶数になるように樹形図じゅけいずを書けばいいですね。

場合の数は、さまざまな場合を全部書きあげるのが基本ですが、本当に全部書くと計算スペースがグチャグチャになってしまうし、時間もかかりますね。『書きあげる時こそキレイに』、『書きあげる時にも省略しょうりゃくできるところは省略する』ことが大切です。

というわけで、一の位を全部書いて偶数だけを後から数えるのではなく、最初から偶数だけを書いた方がきれいに仕上がります。

また2から始める場合と4から始める場合は、どちらも偶数なので、同じ図になります。3と7も奇数同士なので、同じ図になります。つまり百の位が2と3の図だけ書けば十分です。

答えは6+9+6+9=30通りになります。

 

(5)

上から17番目ということなので、百のくらいが8になる場合が何通りあるか、ということから考えます。樹形図じゅけいずを書いてもいいですが、スッキリした解き方になるように、計算で出してみましょう。百の位が8に決まっているので、十の位と一の位を決めればいいですね。十の位は0,1,3,7のどれかで4通り、一の位は十の位で選んだ数字は使えないので3通りになります。だから百の位が8の整数は12通りできます。

上から17番目の12番目まで分かったので、あとは上から5通り数えればいいですね。これはどうやら百の位が7になる数字が答えになりそうです。ですから、あとは全部書きだしてみましょう。『書きあげる時こそキレイに!』でしたね。きれいに書くには数字のタテをそろえること、よけいなことは書かないことが大切です。

ていねいに書けば、答えが分かります。731ですね。

 

(6)

 

 

(Visited 63 times, 1 visits today)

コメントを残す

メールアドレスが公開されることはありません。